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A new quality assessment criterion for evaluating the performance of the nonlinear dimensionality

reduction (NLDR) methods is proposed in this paper. Differing from the current quality assessment

criteria focusing on the local-neighborhood-preserving performance of the NLDR methods, the proposed

criterion capitalizes on a new aspect, the global-structure-holding performance, of the NLDR methods. By

faithfully reflected, and hence more rational measurement for the proper selection of NLDR methods in

real-life applications can be offered. The theoretical argument is supported by experiment results

implemented on a series of benchmark data sets.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Data collected for practical applications in various fields, such as
biological sciences and multimedia information processing, are
often of very high dimensionality that causes great difficulties in
data mining and knowledge discovery. However, the high-dimen-
sional data are often sampled as a probability distribution on a
smooth manifold with intrinsic low dimensionality. Hence, if one
can find the essential low-dimensional representations (or embed-
dings) of the high-dimensional raw data, it will greatly facilitate
further processing and analysis, such as pattern recognition,
visualization and query, of such data. And, this becomes the main
issue of nonlinear dimensionality reduction (NLDR).

Various methods for NLDR have been developed over the years.
They include isometric feature mapping or Isomap [1], locally
linear embedding or LLE [2], Laplacian eigenmap [3], local tangent
space alignment or LTSA [4], Hessian LLE [5], maximum variance
unfolding or MVU [6], locally linear coordination or LLC [7],
neighborhood preserving embedding or NPE [8], linearity preser-
ving projection or LPP [9], Sammon mapping, generative topo-
graphic mapping, the visualization induced SOM [10,11], and
others [12,13]. These methods attempt to capture the low-dimen-
sional representations of the original high-dimensional data, so
that the representations can optimally preserve the local config-
urations of the nearest neighbors of the raw data, and can further
recover the global geometry underlying the original data manifold.
ll rights reserved.

.

The aforementioned methods all attempt to accomplish similar
task and have their own advantages and disadvantages due to
different characteristics of their construction principles. How to
design a reasonable strategy to select an appropriate NLDR method
for a given high-dimensional data set, and how to establish a
rational quality assessment criterion for appropriately evaluating
the performance of different NLDR methods, have thus become
important issues in data-mining research [14–16].

The current state-of-the-art on this issue can be mainly represented
by the following approaches. The first approach evaluates the
performance of a NLDR method by looking at the value of the objective
function it optimizes after convergence [3,17]. Although the approach
allows us to quantitatively assess the qualities of multiple implemen-
tations (e.g., with different parameter values) of similar methods, it
makes the comparison of different methods unfair. The second
approach takes the reconstruction error of a NLDR method as its
quality assessment criterion [18]. Obviously, this criterion is reason-
able and universal. Yet it requires the availability of the bidirectional
mappings between the high-dimensional raw data space and low-
dimensional representational space in a closed form. However, most
NLDR methods are nonparametric, and they only provide values of the
mapping from the raw data space to the representational space for
merely the known parameters. This leads to the infeasibility of this
criterion in many practical NLDR cases. The third approach utilizes an
indirect performance index, such as classification accuracy, to evaluate
the quality of the representations calculated by a NLDR method [19].
Yet the approach only works for data with special properties, such as
the labeled data. The well-known Spearmans rho measurement has
also been employed to estimate how well the corresponding low-
dimensional projection preserves the order of the pairwise distances of
the high-dimensional data points [20]. For high-dimensional data
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Fig. 1. (a) The shortest path tree (SPT) of the Swiss-roll data. The star point is its root vertex, calculated by Formula (4). (c) The main branches of the SPT. The solid dots denote the

leafs of these branches. (b) and (d) The precise 2-D unwrapped data projections of (a) and (c). (e)–(g) The 2-D embeddings of the Swiss-roll data obtained from Isomap, MVU, and

LTSA, respectively. The solid lines denote the corresponding main branches of these embeddings. It should be noted that the aspect ratios of (d), (e), (g) are all set as 4:1 for easy

visualization of the similar and dissimilar transforming scales along the x and y axes of the embeddings of (e) and (g) compared to the original manifold figure (d), respectively.
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Fig. 2. (a) Swiss-roll manifold, wrapped by a 2-D 4:1 rectangle. (b) Data set A with 1500 points generated from the manifold (a). (c) S-curve manifold, wrapped by a 2-D 2:1

rectangle. (d) Data set B with 1200 points generated from the manifold (b). The upper and lower parts of the data set consist of 200 and 1000 points, respectively.

1 The good local-neighborhood-preserving performance of a NLDR method on a

given data set can be visualized by the continuously changing colors of the local

areas of the embeddings calculated by this method, and can also be quantitatively

reflected by the corresponding larger values of LCMC, T&C, and MRRE

measurements.
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lying on a low-dimensional manifold, however, such a quality
assessment generally cannot take effect, since only small pairwise
distances between nearby data can be preserved in the projection
while large distances between faraway ones incline to highly deviate
from their real geodesic distance along the underlying manifold.

The more recent approach to this problem sticks to the intrinsic
goal of NLDR and attempts to faithfully assess how well the original
data structure is preserved by the representations obtained from a
NLDR method. The quality criterion is generally of wider applic-
ability, and are simpler and more rational in its construction
principle than the above three approaches [21]. The latest devel-
opments along this line of reasoning include the local continuity
meta-criterion or LCMC [14,22], the trustworthiness and continuity
measure or T&C [16,23], the mean relative rank error or MRRE
[15,21,24], etc. All of these criteria focus on the preservation of the
local geometric structures of the data, and analyze the situation in
the neighborhood pre-specified around each of the entire data
[1–7] in the NLDR implementation. Accordingly, these criteria are
always able to successfully assess the local-neighborhood-preser-
ving performance of the employed NLDR methods.

Nevertheless, criteria employed in the current studies are still
not satisfactory because they neglect the global-structure-holding
capability of the utilized NLDR methods. That is, the representa-
tional set can have a perfect local-neighborhood-preserving prop-
erty but it does not mean that it is of good global-geometry-holding
capability (both constitute the goal of NLDR method). On one hand,
even for a perfect local-neighborhood-preserving embedding set, it
may encounter unexpected distortions in different parts of its
global shape. This can easily be observed in Fig. 1(f), which shows
the embeddings of the Swiss-roll data (as depicted in Fig. 2(b)),
with intrinsic 2-D 4:1 rectangle figure, calculated by the MVU
method.1 On the other hand, some spectral methods tend to yield
low-dimensional embedding set with different transforming scales
in its various feature coordinates, as clearly shown in Fig. 1(g),
which depicts the embeddings of the Swiss-roll data by utilizing
the LTSA method for NLDR implementation. For applications such
as pattern recognition, the aforementioned irregularities, i.e., large
differences in global shape or aspect ratios, pose serious problems
on any classifier because the global metric relationship is greatly
changed. Hence, it is more reasonable to evaluate the capability of a
NLDR method by considering its global-structure-holding perfor-
mance as well as its local-neighborhood-preserving performance.

The motivation of this paper is to propose a new approach to
more properly assess the performance of the NLDR methods. In
particular, a new quality assessment criterion is constructed for
evaluating the global-geometry-holding property of the embed-
dings calculated by the employed NLDR techniques. Then by
simultaneously considering both their local-neighborhood-preser-
ving and the global-geometry-holding properties, the performance
of the employed NLDR techniques can be more faithfully
and comprehensively assessed. The rationality of the proposed
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approach is substantiated by numerical simulations performed on
a series of benchmark data sets.

The general idea and the implementation details of the new
quality assessment criterion are first introduced in Section 2.
The effectiveness of the proposed criterion is then verified in
Section 3 by applying it to evaluate the performance of various
dimensionality reduction methods on a series of benchmark data
sets. The paper is concluded by a summary and outlook for future
research.
2. Local and global quality assessments for NLDR

As aforementioned, current quality assessments mainly focus
on the evaluation of the local-neighborhood-preserving perfor-
mance of the utilized NLDR method. The purpose of this study is to
construct a new measure to further assess the global-structure-
holding capability of the employed method, so that by integrating it
with the local measure to give more comprehensive evaluation for
the performance of the NLDR method. In what follows, we first give
a brief review of three recent local assessment methods, and then
propose the global assessment method and the algorithm for its
calculation.

2.1. Local quality assessment for NLDR

We first review in this section three of the recently presented
quality assessment criteria for NLDR, namely the LCMC [14,22], the
T&C [16,23], and the MRRE [15,21,24].

Denote the original data set as X ¼ fxig
l
i ¼ 1, and the correspond-

ing representational set calculated by the employed NLDR method
as Y ¼ fyig

l
i ¼ 1. Then the LCMC is defined as

QL ¼ 1�
1

lk

Xl

i ¼ 1

j@X
k ðiÞ

\
@Y

k ðiÞj�
k2

l�1

� �
, ð1Þ

where k is the pre-specified neighborhood size,@X
k ðiÞ is the index set

of xi’s k-NN, and @Y
k ðiÞ is the index set of yi’s k-NN. Here k-NN

represents the k nearest neighbors of a datum. By computing the
average overlapping between two k-NN neighboring sets of the
original and the representational sets, the LCMC criterion gives a
general measure for the local faithfulness of the calculated
embeddings.

The T&C measure involves two evaluations, the trustworthiness
measure and the continuity measure, defined, respectively, as

MT ¼ 1�
2

lkð2l�3k�1Þ

Xl

i ¼ 1

X
jAUkðiÞ\VkðiÞ

ðrði,jÞ�kÞ,

MC ¼ 1�
2

lkð2l�3k�1Þ

Xl

i ¼ 1

X
jAVkðiÞ\UkðiÞ

ðr̂ði,jÞ�kÞ,

where k is the neighborhood size, r(i,j) ðr̂ði,jÞÞ is the rank of xj (yj) in
the ordering according to the distance from xi(yi) in the original
(representational) space, and Uk(i) (Vk(i)) is the set of those data
samples that are in k-NN of xi(yi) in the representational (original)
space. In particular, MT measures the trustworthiness degree that
data points originally farther away enter the neighborhood of a
sample in the embeddings; as a comparison, MC evaluates the
continuity degree that data points that are originally in the
neighborhood are pushed farther away in data representations.
The T&C measure is then defined as

QT ¼ aMTþð1�aÞMC , ð2Þ

where aA ½0,1� is the compromise parameter. It should be noted
that in T&C measure, the trade-off between these two terms,
tunable by a parameter a, governs the trade-off between
trustworthiness and continuity. By properly pre-specifying a, the
measure so evaluated can reflect the consistency between the local
neighborhoods of the original data and the corresponding ones of
the embeddings calculated by the utilized NLDR method.

The MRRE relies on the principle very similar to that of the T&C,
also including two elements defined as

WT ¼ 1�
1

Hk

XN

i ¼ 1

X
jAUkðiÞ

jrði,jÞ�r̂ði,jÞj

rði,jÞ
,

WC ¼ 1�
1

Hk

XN

i ¼ 1

X
jAVkðiÞ

jrði,jÞ�r̂ði,jÞj

r̂ði,jÞ
,

where k is the neighborhood size, and Hk ¼Nl
Pk

i ¼ 1ðl�2iþ1Þ=i is
the normalizing factor. The MRRE is of the form

QM ¼ bWTþð1�bÞWC , ð3Þ

where bA ½0,1� is the compromise parameter. The intrinsic differ-
ence between the MRRE and the T&C is that the former considers all
the k-NN samples in the representational (original) space, while the
latter focuses on the k-NN of the samples in the representational
(original) space but not in the original (representational) space.
Also their different weights on the trustworthy and continuity
components always bring more contrastive while instable perfor-
mance of the MRRE measure than that of the T&C measure, as can
be observed in the experiments of Section 3.

By utilizing the above criteria, the local-neighborhood-preser-
ving performance of the employed NLDR methods can be efficiently
assessed. An effective method for evaluating the global-structure-
holding performance of NLDR is to be explained in the next section.

2.2. Global quality assessment for NLDR

The quality of a NLDR method can be assessed by how well the
calculated embeddings can hold the global structure of the original
data. Specifically, it can be evaluated by the transforming scales of
the embedding figure along various directions compared to the
original data manifold. If the embeddings well preserve the original
global manifold figure, the transforming scales should be similar
along all directions of the embeddings. On the contrary, if the
embedding set encounters distortion of the global shape or aspect
ratio of the original data manifold, it tends to be of distinct
transforming scales along different orientations compared to the
original manifold, as clearly shown in Fig. 1(f) and (g). Accordingly,
by quantitatively evaluating the difference of the transforming
scales of the embedding set compared with the original data
manifold along various directions, the global-structure-holding
quality of the utilized NLDR method can then be explicitly assessed.
To this aim, two problems need to be settled: (i) how to acquire the
global structure information of the original and the embedding
data along different corresponding directions? and (ii) how to
calculate the in-between transforming scales and how to quantify
the difference of these scales?

To facilitate our discussion on the strategy of attaining the
global structure information of the original data set along various
orientations, we first introduce some relevant knowledge on
shortest path tree (SPT) utilized in our analysis. A SPT is a rooted
spanning tree of a connected graph, whose branches are taken as
the shortest paths from the root vertex to all other vertices of the
graph. Each vertex of a SPT is connected to a single vertex
immediately following it and leads in turn to the root vertex on
the shortest path. Obviously, the SPT is designated as long as the
root vertex is selected. Without any prior knowledge about the
underlying manifold, it is preferable to select the data center as
the root. An easy way to obtain the approximate center of the data is
to utilize their approximate circumcenter. For a bounded closed set
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O, its circumcenter is defined as

Center¼ argmin
xAO

max
yAO
ðJx�yJÞ

� �
:

Correspondingly, the approximate circumcenter of the data set X

can be obtained as

xc ¼ argmin
xj AX

max
xk AX
ðDðj,kÞÞ

� �
, ð4Þ

where D(j,k) is the specified distance measure between data points
xj and xk. Note that the optimization problem (4) can be solved by
any sorting algorithms, such as the well-known heap selection
algorithm [25]. Utilizing xc so calculated as the root vertex, the SPT
of the data set can then be designated.

According to the above knowledge, the global structure infor-
mation of the original data set X along various orientations can be
evaluated through the following three steps: First, generate the
k-NN neighborhood graph G ¼ (V,E), where the vertex set V consists
of the given data set X, and the edge set E contains the k-NN edges of
all vertices; second, construct the SPT superimposed on X from the
neighborhood graph G, as depicted in Fig. 1(a) (in the original
space) and (b) (in the projection space)2; and third, yield the main
branches of the SPT so constructed, as shown in Fig. 1(c) (in the
2 The root vertex of the SPT is specified as the approximate center calculated by

Formula (4). The distance D(i,j) in the formula is employed as the length of the

shortest path, i.e., the approximate geodesic distance, between xi and xj.
original space) and (d) (in the projection space). Specifically, since
there are k neighbors around the estimated center (the root vertex)
xc of X, and each branch of the SPT definitely passes through one
neighbor of the root xc, all branches are naturally clustered into k

categories by taking the neighbors they pass by as cluster labels.
Then it is reasonable to select the longest branch from each
category as the representation of that category. Evidently, the
branch so selected approximately depicts the orientation tendency
of all branches in this category directed from the root to their leaf
vertices. Subsequently, the k branches so constructed are config-
ured as the main branches of the SPT, and the lengths (denoted as
DX ¼ fdxig

k
i ¼ 1) of these main branches, i.e., the shortest paths

between the root and the corresponding leafs (denoted as
LX ¼ flxig

k
i ¼ 1), naturally reflect the global structure of the data

manifold along different directions.
Based on the evaluation of the global structure information of X,

the corresponding structure of the embedding set Y can be
correspondingly assessed. Denote the points of Y corresponding
to xc and LX ¼ flxig

k
i ¼ 1 as yc and LY ¼ flyig

k
i ¼ 1, respectively. Corre-

sponding to the length sequence DX ¼ fdxig
k
i ¼ 1 between xc and

LX ¼ flxig
k
i ¼ 1, denote the sequence DY ¼ fdyig

k
i ¼ 1 as the distances

between yc and LY ¼ flyig
k
i ¼ 1. Similar to DX, the sequence DY also

correspondingly represents the global shapes of Y along different
directions, as clearly depicted in Fig. 1(e)–(g).

Our goal is then to evaluate the global-structure-holding degree of
the embedding data Y by calculating the difference of the transform-
ing scales between X and Y along various directions, i.e., between the
sequences DX and DY. This aim can approximately be attained by
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computing the dissimilarity between the ranking orders of DX and DY,
which is just the purpose for which the well-known Spearman’s rank-
order correlation coefficient is designed [26]. Specifically, the coeffi-
cient is computed as follows: The sequences DX and DY are first
converted into their rankings, denoted as RDX ¼ frig

k
i ¼ 1 and RDY ¼

f~r ig
k
i ¼ 1. Then Spearman’s coefficient is given by

QGB ¼ 1�
6
Pk

i ¼ 1 d2
i

Nk
, ð5Þ

where di ¼ ri�~r i, and Nk ¼ 2kðk2�1Þ is the normalization factor.
The coefficient so calculated then rationally assesses the quality of
the global-structure-holding property of the embedding set Y, i.e., the
global-structure-holding performance of the employed NLDR method.

Based on the aforementioned, the algorithm for evaluating the
global-structure-holding performance of the NLDR method can
then be proposed as follows:

Algorithm for global quality assessment of NLDR
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Input:
 Original data set X ¼ fxig
l
i ¼ 1 � Rn; embedding data set

Y ¼ fyig
l
i ¼ 1 � Rd ðdonÞ calculated by some NLDR

method; neighborhood size k.

Step I.
 Construct the k-NN neighborhood graph of X, and

compute the approximate center xc of X according to
Formula (4), and then generate the SPT of the graph by
taking xc as the root vertex.
Step II.
 Generate the main branches of the SPT by the method
introduced in Section 2.2. Denote the leaf vertices of these

branches as LX ¼ flxig
k
i ¼ 1, and their lengths as

DX ¼ fdxig
k
i ¼ 1.
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Find the corresponding points of xc and LX ¼ flxig
k
i ¼ 1 in

Y, denoted as yc and LY ¼ flyig
k
i ¼ 1, respectively. Let the

sequence DY ¼ fdyig
k
i ¼ 1 be the distances between yc

and LYk ¼ flyig
k
i ¼ 1.
Step IV.
 Calculate Spearman’s coefficient QGB of the sequences
DX and DY by utilizing Formula (5).
Output:
 The final quality assessment of the global-structure-
holding performance of the utilized NLDR method: QGB.
The proposed criterion, QGB, presents a new aspect (the global-
structure-holding degree), which is not considered by current
quality assessment methods, to measure the performance of the
NLDR method. In practice, different criteria measure different
aspects of a NLDR method and more information is contained in
examining both the local and global qualities. Thus both local and
global quality assessments should be involved to more compre-
hensively evaluate the performance of the NLDR method. In our
experiments, we employ a simple and practical way to get a single
evaluation value for easy quality assessment of the utilized NLDR
techniques, i.e.,

QY ¼ mQGBþð1�mÞQLC , ð6Þ

where QLC is any local quality assessment obtained by the
approaches introduced in Section 2.1, and mA ½0,1� is a tuning
parameter to balance the local measure QLC and the global one QGB

in quality assessment.
It should be noted that to calculate the proposed quality

assessment criterion, an appropriate neighborhood size k needs
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Fig. 5. 2-D embeddings of Data C calculated by the 12 dimensionality reduction methods, respectively. Figures in the last row depict the corresponding quality assessments QL,

QT, QM, QGB, QY for the performance of these methods, respectively.
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to be pre-specified. A number of methods have been developed to
select a proper neighborhood size for NLDR implementation. For
instance, a ‘‘trial-and-error’’ method based on the trade-off between
two cost functions has been proposed in [18]. The disadvantage of
the method is that it needs to repeatedly implement the embedding
algorithm, making it a little costly [27]. In [28], a neighborhood
contraction and expansion method was also constructed to adap-
tively and efficiently calculate the neighborhood sizes at each point,
and their average value can then be specified as a reasonable
neighborhood size in a global aspect. This method is hence adopted
in our algorithm for selecting the neighborhood size k.

Using a series of benchmark data sets in NLDR research as test
examples, the effectiveness of the proposed quality assessment
criterion is to be evaluated in the next section.
3 It should be noted that the presetting ofm (and furthermore,a,b) remains to be

a subjective matter, and its specification still depends on the user perspective to

emphasize on the local or global (and the trustworthiness or continuity) quality of a

method.
3. Experiments

Two synthetic and one image data sets were employed to evaluate
the performance of the proposed quality assessment criterion. The
synthetic Data set A and Data set B, as depicted in Fig. 2(b) and (d) with
1500 and 1200 points, respectively, were generated from the classical
Swiss-roll and S-curve manifolds, as shown in Fig. 2(a) and (c),
respectively. It should be noted that Data set B is of different densities
in its upper and lower parts, consisting of 200 and 1000 points,
respectively. The image data set (Data set C) contains 698 4096-
dimensional vectors, representing the brightness values of 64 by 64
pixel images of a face with different poses and lighting directions. All
of these data sets are the most commonly used benchmark data in
NLDR research [1–7,13] and were thus taken as the empirical basis of
our simulations. Furthermore, 12 dimensionality reduction methods,
including three linear techniques: PCA [29], MDS [30], ICA [31], and
nine nonlinear methods: Isomap, LLE, Laplacian eigenmap, LTSA,
Hessian LLE, MVU, LLC, NPE, and LPP, were applied to these data sets in
our simulations. For each 2-D embedding set of the three benchmark
data sets calculated by the 12 methods, the proposed global quality
assessment QGB, as computed in Formula (5), was calculated, and the
local quality assessments, including QL, QT, QM as computed in
Formulas (1), (2), (3), respectively, were also made. The results are
depicted in Figs. 3, 4 and 5, respectively. Especially, the integrated
quality assessment criterion QY (Formula (6)), by taking QT as the QLC

criterion (Formula (2)) and setting the value of the compromise
parameter as 1/2, i.e., let QY as the average of the local and global
quality measurements,3 were also demonstrated. The embeddings of
the data sets are also depicted in the corresponding figures to give the
overall visualization of the performance of the involved methods.

Compared to the local quality assessments QL, QT, and QM, it can be
observed in these figures that by integrating the global measurement
QGB, QY more properly evaluates the performance of the dimensionality
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reduction methods. For instance, each of the three local quality
assessments of the embeddings of Data set A calculated by MVU
attains a larger value than that obtained by Hessian LLE and LTSA.
However, it is seen that the embedding set obtained by MVU
encounters a significant distortion problem in its global configuration.
While in comparison, those calculated by Hessian LLE and LTSA finely
recover the intrinsic rectangle figure, and faithfully keep the local
neighborhood structures, of the original data manifold. The latter two
methods thus possess better dimensionality reduction qualities than
the former one. This is consistent with the quality assessment results
of the criterion QY. Besides, based on the three local quality assess-
ments of the embeddings of Data set B, the performance of Isomap is
not as good as that of Hessian LLE and LTSA. However, compared to
these two methods which encounter aspect ratio abnormities on their
global embedding figure, the embeddings calculated by Isomap more
faithfully preserve the intrinsic 2:1 rectangle shape of the original data.
As a whole, Isomap performs better than Hessian LLE and LTSA,
agreeing with the qualities evaluated by the QY calculated on these
methods. Furthermore, for the NLDR methods applied to Data set C,
both Isomap and MVU are not the most preferable methods according
to the qualities assessed by QL, QT, and QM. Yet by visualization, it can be
observed that Isomap and MVU are actually the best performers of all
12 methods, similar to what is evaluated by the criterion QY. The
reason is threefold: Firstly, the embedding data points are uniformly
distributed and well organized in a global aspect. Secondly, nearby
points in the embeddings correspond to similar images in a local
aspect, as can be observed in Fig. 6. Thirdly, each coordinate axis of the
embeddings highly accords with one degree representational freedom
underlying the original data. Specifically, the x and y axes represent the
degrees of the up-down and left-right facing poses of the face images,
respectively, as depicted in Fig. 6. All these results demonstrate the
more faithful quality assessment of QY, which integratively considers
both the proposed global measure QGB and the current local one, on
evaluating the performance of the utilized NLDR techniques.
4. Conclusion

A new quality assessment criterion for evaluating the performance
of the NLDR method has been proposed in this paper. Different from
the conventional quality assessments that focus on the local-neigh-
borhood-preserving performance of the NLDR method, the proposed
assessment method further considers its global-structure-holding
capability. Since both properties intrinsically reflect the capability of a
NLDR method, the criterion by combining both global and local
quality assessments generally attains more accurate quality assess-
ment than the conventional ones. The effectiveness of the proposed
criterion has been experimentally supported by its outstanding
performance on a series of benchmark data sets.
Further investigations in our future research include evaluating
the qualities of the performance of different NLDR methods by
estimating their quality assessment tendency under a certain range
of the k values, and substantiating the effectiveness of the proposed
criterion by more practical applications.
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